
Instituto de Física da UFF Termodinâmica Segundo Semestre de 2012 Lista 6

- 1) Se um sistema A está em contato com uma fonte de calor A' com temperatura constante T_0 e pressão constante P_0 . Mostre explicitamente que o sistema A está em equilíbrio com a fonte de calor A' para $T \rightarrow T_0$ e $P \rightarrow P_0$. (Dica: ver as notas de aula de 07/01/2013).
- 2) A pressão do vapor da água é 1.0 atm a 373 K e o calor latente de vaporização é 40,7 KJ /mol. Estime a pressão de vapor a temperatura de 363 e 383 K respectivamente.
- 3) A pressão de vapor do gelo a 268 e 273 K são 2965 e 4560 torr respectivamente. Estime o calor latente de sublimação do gelo. Procure achar na literatura o calor latente de fusão do gelo e o calor de vaporização da água, a soma destes calores latentes deveria ser igual ao valor de calor latente de sublimação. O seu resultado confere?

Problemas propostos do livro do REIF (capítulo 8)

- 8.4) O Helio permanece liquido a zero absoluto e a pressão atmosférica, porem se transforma em sólido a pressão suficientemente elevada. As densidades dos sólidos são normalmente maiores do que a dos líquidos (água é uma exceção). Considere a linha de equilíbrio de fases entre o sólido e liquido. No limite quando Tö 0 é positiva, zero ou negativa a pendente dp/dT desta linha?
- 8.7) O calor latente molar da transformação da fase 1 para a fase 2 a temperatura T e pressão é l, Qual o calor latente na transformação a temperatura ligeiramente diferente (e a sua pressão correspondente), isto é, qual é o (dp/dT)? Dar uma solução em função de L (calor latente) e do calor molar especifico cp, do coeficiente de dilatação α e do volume molar V de cada fase a temperatura T e pressão p originais.
- 8.8) Uma barra de aço de seção reta retangular (altura a e largura b) esta colocada sobre um bloco de gelo com os seus extremos sobressalentes como indicado na figura. Pendura-se um peso de massa m em cada extremo da barra. O sistema todo está a 0° C. Como conseqüência da pressão exercida pela barra, o gelo funde debaixo dela e volta a congelar na parte superior. Por tanto é liberado um calor acima da barra que é conduzido através da barra e que é absorvido pelo gelo debaixo dela. Encontrar uma expressão aproximada para a velocidade com que a barra afunda no gelo. A resposta deve dar-se em função do calor latente de fusão l por grama de gelo, das densidades $\rho_{\rm g}$ e $\rho_{\rm a}$ (gelo e água) da condutividade gelo.

11.4) (a) Mostre que para uma temperatura fixa, a entropia de um metal é independente do campo magnético nos estados normal e supercondutor.

Dica: Partindo da primeira lei como

$$dE = TdS - pdV + M dH$$
,

mostre a igualdade de Maxwell:

$$(\partial M / \partial T)_H = (\partial S / \partial H)_T$$

- b) Dada a curva do campo critico H=H (T) para um supercondutor. Ache uma expressão para (C_s-C_n) entre a capacidade calorífica do metal no estado supercondutor e normal a mesma temperatura T.
- c) Qual é a resposta do item b) a temperatura de transição $T = T_c$? (neste caso H = 0)
- 11.6) Considere um metal num campo magnético zero a pressão atmosférica. A capacidade calorífica do metal no estado normal é C_n = γ T, no estado supercondutor é C_s = α T 3 , γ e α são constantes e T a temperatura absoluta .
- a) Expressar a constante α em função de γ e a temperatura critica T_c
- b) Determine a diferença entre $\,$ a energia interna do metal nos estados normal e supercondutor para T=0. Expressar o resultado em função de γ e T_c .

Lembrete: A entropia nos estados normal e supercondutor é a mesma tanto para T=0 e T_c .